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ABSTRACT 

This paper utilizes a discrete wavelet transform to present 
a parallel architecture for independent component analysis 
(ICA), which is a hybrid system consisting of two sub-ICA 
processes. One process takes the high-frequency wavelet 
pari of observations as its input, meanwhile the other pro- 
cess takes the low-frequency part. Their results are then 
merged to generate the final ICA results. Compared to the 
existing ICA algorithms, the prolmsed approach utilizes the 
full observation information, hut the effective input length 
of the two parallel processes is halved. It therefore gener- 
ally provides a new way for fast ICA implementation. In 
this paper, the experimental result has shown its success in 
extracting the independent components from a mixture. 

1. INTRODUCTION 

In the past decade, independent component analysis (ICA) 
has been extensively studied upon its attractive potential a p  
plications in medical signal processing [SI, speech recogni- 
tion [7, 121, signal and image processing [ll], dimension 
reduction [6], and so forth. In literature, a classical def- 
inition of ICA is as follows: Suppose there are m inde- 
pendently and identically distributed non-Gaussian sources 
(also called independent components interchangeably) with 
at most one Gaussian source. All of them are statistically 
independent each other. The sources are sampled at dis- 
Crete time t, denoted as yt = [yl , yt , . . . ;y1 ] , and 
are instantaneously and linearly mixed by an unknown full- 
column matrix A with 

(1) ( 2 )  (-4 T 

xt = Ayt, 15 t i N (1) 

(1) (2) where xt = [xt , xt , . . . , is an observation at time 
step t. The ICA is to find out a de-mixing matrix W such 
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where & = [$:'I, $!*), . . . , fji"lT is an estimate of the 
sources yt, P is a permutation matrix, and A is a diago- 
nal matrix. To achieve this goal, a variety of ICA algo- 
rithms have been developed, particularly from the informa- 
tion theoretic framework. For example, lnformation Maxi- 
mization (INFOMAX) [ l ,  31 and Minimum Mutual Infor- 
mation (MMI) [Z] both utilize a fixed nonlinearity func- 
tion to perform ICA. Subsequently, they can separate either 
super-Gaussian or Sub-Gaussian sources only, but not both. 
To circumvent this scenario, Xu et al. [4] presented Leamed 
Parametric Mixture (LPM) based algorithm to cany out ICA. 
Many experiments have shown that the LPM can separate 
any combination of super-Gaussian and sub-Gaussian sources. 
However, the computation of LPM is quite tedious because 
many extra new parameters have to be learned together with 
W .  To simplify the computation and speed up the perfor- 
mance convergent speed, Cheung and Xu [ 5 ]  further devel- 
oped an alternative approach, in which the nonlinearity sep- 
arating function is estimated by a single polynomial term 
with an adjustable exponent. In general, the above-stated 
algorithms as well as other most algorithms are all to se- 
quentially scan a long series of all observations so that their 
underlying information can be fully utilized in performing 
ICA. However, such a sequential scanning without invoking 
any parallel mechanism may limit the further improvement 
of ICA learning speed. 

Recently, discrete wavelet transform (DWT) has been 
a popular tool in the areas of signal and image processing 
[9, IO]. One important characteristic of DWT is that not 
only a few large coefficients of its transform dominate the 
representations, but also it can decompose a signal at dif- 
ferent scales and resolutions. Subsequently, each part can 
be processed in parallel. Hence, this paper utilizes DWT 
to present a parallel ICA (P-ICA) architecture, which is a 
hybrid system consisting of two sub-ICA processes. One 
process takes the high-frequency wavelet part of the obser- 
vations as its input, meanwhile the other process takes the 
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low-frequency part. Their outputs are then merged to gen- 
erate the final result. Compared to the existing ICA algo- 
rithms, the proposed approach utilizes the full observation 
information, but the effective input length of the two paral- 
lel processes is halved. It can therefore generally provide 
a new way for fast ICA implementation. In this paper, the 
experimental result has shown its success in extracting the 
independent components from a mixture. 

2. THE PARALLEL ARCHITECTURE OF ICA 
USING DISCRETE WAVELET TRANSFORM 

The parallel architecture of ICA using a discrete wavelet 
transform is shown in Figure 1. First, we utilize the DWT to 
decompose a series of observations, denoted as X, into two 
parts: HX and LX, respectively. The former is the high- 
frequency part of X, and the latter is the low-frequency one. 
We then extract the independent components from HX and 
LX via two ICA processes: lCAl and ICA2, respectively. 
Eventually, their outputs are merged as the final ICA output 
via the reconstructor in Figure 1. In the following, we will 
present a theorem to elaborate the reason that P-ICA works. 

Theorem. Given x = As, where x is a d-dimension 
vector, s is an m dimensional vector and A = ( a i j )  is d x m 
matrix. {$k,nlk,n E 2)  is an orthogonal wavelet basis, 
where we let 2 be integral set for simplicity. {d,,lk, n E 
Z }  is the wavelet coefficient of sj under the basis {$k," Ik, n 
E Z}.  By denoting wavelet coefficients of vector s as (Ck," 

of vector z under the basis {$k," Jk, n t Z }  are then given 
as follows: 

{ b k , ,  = A c k , ,  = [Calj.',, ,,e azjcjk,, ,...,C a d j ~ , , ] } .  

- 1  - [ C ~ , + , C ~ , ~ ,  . . . , c & J T / k , n  E Z},  the wavelet coefficients 

m m m 

j=1  j = 1  j=l 

Proof: Since 

k,n=-m 

we then have 

where i = 1,2 , .  . . , d. Hence, the wavelet coefficient of x 
is: 

m m m 

Figure 1: The architecture of P-ICA, which consists of two 
parallel sub-ICA processes: ICAl and ICA2. 

This theorem tells us that the mixing process from sources 
to observations is the same as the mixture from the wavelet 
coefficients of sources to those of observations. That is, we 
can perform ICA on the wavelet coefficients, instead of the 
original observations. Hereafter, we transform the obser- 
vations to the wavelet representations, and whereby divid- 
ing them into two parts: high-frequency and low-frequency 
parts. After performing TCA on these two parts, we then 
merge their outputs to generate the final ICA results via the 
reconstructor as shown in the next section. 

3. THE 2-LEVEL DECOMPOSING AND 
RECONSTRUCTING ALGORITHM OF WAVELET 

Let { v k l k  E Z }  be a multi resolution analysis, and w k  in 
vk+1 be a complement space of v i .  L ~ ( R )  can he therefore 
decomposed into direct sum of snb-space as follows: 
(3) 

k E Z  

There exists aunique decomposition for any f(z) E L2(R):  

k = - m  

where g k ( x )  E w k .  

scale function 4(x) and wavelet function $(z), { 4 ( 2 k x  - 
j ) } ,  {$(2% - j ) }  are Rietz basis of space V h  and w k  re- 
spectively. The decomposition relation of 4(z) and $(z) is 
given as follows. 

4 ( 2 x  - 1 )  = 

We obtain the decomposition series (h}, {bn}. The de- 
composing algorithm is then given as follows: 

Here we consider the case of 2-level decomposing. Given 

m 

{ a l - z n 4 ( z  -TI) + b l - z n $ ( z  - TI)} (4) 
n=--m 
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Figure 2: (a) The wavelet decomposing process, where 1 2 
means to halve the sample size; @)The wavelet reconstruct- 
ing process, where T 2 means to double sample size. 

The process of signal decomposition is shown in Figure 2(a). 
Subsequently, the original signal is decomposed into high- 
frequency and low-frequency parts. 

The two-scale relation of 4(z) and @(z) is given as fol- 
lows. 

m 

n=-m 

The two-scale series {pn}, {q-} are then obtained, whereby 
the reconstructor is to give: 

The reconstnrcting process is shown in Figure 2@). Con- 
sequently, we can acquire s j s  via the inverse of DWT. 

4. THE ICA ALGORITHM 

In the P-ICA, both of ICAl and E A 2  can be realized by an 
existing ICA algorithm. Here, we adopt the Adaptive Poly- 
nomial Power Learning Estimation based ICA Algorithm 
(APPLE-ICA) [ 5 ]  upon the fact that it can successfully sep- 
arate any combination of sub-Gaussian and super-Gaussian 
sources with at most one Gaussian source. The APPLE-ICA 
algorithm utilizes a single polynomial term with its expo- 
nent parameter learned together with W towards maximiz- 
ing the following cost function: 

wv = &(W,P) 

where C is a constant term and P = {pl,pZ,.  . . ,pm}. The 
algorithm can be summarized as follows: 

Step 1. Initialize W and a parameter 

U = [ U I ,  u2,. . . , um]T 

Step 2. Given an observed signal zt ,  let: 

Gt = Wztp, = Xe;, 1 5 j 5 m 

where X is a positive constant. 

Step 3. Update W a n d  U by: 

with 

The iterations of Step 2 and Step 3 are not stopped until both 
of W and P converge. For more details of the APPLE-ICA 
algorithm, interested readers can refer to the paper [ 5 ] .  

5. EXPERIMENTAL RESULT 

To investigate the performance of the proposed P-ICA, we 
used two sources: one is uniformly distributed, and the other 
is Gaussian distributed. The sample size N is set at 4,000. 
The observations were obtained by Eq.(l) with the mixing 
matrix: 

A =  (!:2 :::). 
After we scanned the learning data set around 150 times, the 
performance P-ICA was then converged. Figure 4 shows the 
final output of P-ICA, while sources and the mixtures are 
shown in Figure 3(a) and @), respectively. It can be seen 
that the P-ICA has successfully recovered the wave-form of 
the original sources. That is, the original independent com- 
ponents have been successhlly extracted from the mixture. 
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Figure 4: The slide window of the independent components 
recovered by P-ICA. 

6. CONCLUDING REMARKS 

We have presented a hybrid system consisting of two paral- 
lel ICA processes using a discrete wavelet transform. One 
ICA process extracts the independent components from the 
high-frequency part and the other from the low-frequency 
part. The reconstructor in P-ICA then merges their results, 
and finally generates the ICA outputs. Since this approach 
utilizes the full observation information, hut the effective 
input length of the two parallel processes is halved. I t  there- 
fore generally provides a new way for fast ICA implementa- 
tion. In this paper, the experiment has demonstrated that P- 
ICA can successfblly extract independent components from 
a mixture. In the future studies, we will further quantita- 
tively investigate how much the ICA leaming speed can be 
improved by such a parallel architecture. 
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